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Abstract
The problem of a relativistic spinning particle interacting with pseudoscalar
potentials in (3 + 1) dimensions is formulated in the framework of covariant
supersymmetric path integrals. The relative Green’s function is expressed
through a functional integral over bosonic trajectories that describe the external
motion and fermionic variables that describe the spin degrees of freedom. As
an application, we have considered the case of the plane wave, where the
pseudoscalar potential is an arbitrary function of the variable (kµxµ). The
(3 + 1)-dimensional problem is reduced to a (1 + 1)-dimensional one by using
an identity. For the case of k2 = 0, the relative propagator is exactly calculated
and the wavefunctions are extracted.

PACS numbers: 03.65.Ca, 03.65.Db, 03.65.Pm

1. Introduction

As we know, Feynman introduced his famous path integral quantization method in order
to satisfy the need for comprehension of quantum mechanics [1]. Many problems in
nonrelativistic quantum mechanics are exactly solved by the use of path integral approach
starting from their classical origins (i.e. classical actions). Furthermore, the path integral
remains a useful quantization procedure mainly when it becomes, like in cosmology, difficult
to use the other methods [2], which explains the increased interest of this method and the
importance to develop the path integration techniques [3, 4].

In relativistic quantum mechanics and particularly for the Dirac equation the Feynman
method has not had the same development because of the difficulty of inserting the
anticommuting γ -matrices by means of paths and the fact that the spin has no classical
origin. However, a successful supersymmetric formulation for relativistic spinning particles
was elaborated by Fradkin and Gitman [5] according to the Feynman standard form∑

paths

exp iS(path), (1)
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where the supersymmetric action S describes at the same time the external motion and the
internal one related to the spin of the particle. Elsewhere, the same problem is reconsidered
following the so-called global and local representations by Alexandrou et al [6]. We note,
also, that the Fradkin–Gitman formulation is generalized to the case of arbitrary dimensions
in [7] and to the case of the Dirac equation with torsion field in [8].

On the other hand, the problem of the Dirac equation with pseudoscalar potentials (PSP)
has been widely discussed [9–13]. The subject of spin 1

2 fermion interacting with PSP has
more significant implications in quantum field theory. Namely, the Dirac equation with PSP
that is written in the form[

iγ µ ∂

∂xµ
− γ 5Vp(x) − m

]
ψ(x) = 0, (2)

with the convention γ 5 = γ 0γ 1γ 2γ 3, is the first approximation of the field theory describing
the interaction of the fermion with a pseudoscalar particle. This interaction is governed by the
Lagrangian

Lint = igψ̄(x)γ 5ϕ(x)ψ(x) (3)

where g is a coupling constant, ψ(x) is the fermion field and ϕ(x), which is the field
of the pseudoscalar particle, is a solution of the Klein–Gordon equation in contrast to the
electromagnetic interaction where the photon field Aµ obeys Maxwell’s equations.

During the last few years, some considerable investigations have been made to understand
the quantum behaviour of a Dirac particle subjected to PSP; De-Castro has discussed, in
(1 + 1) dimension, the existence of bounded states [10] in comparison with the case of
(3 + 1) dimension where there are no bounded solutions [11]. He also studied the problem
of scattering of fermions by a pseudoscalar potential, more particularly with a step barrier
and the novelty in this shape of interactions is the absence of the Klein’s paradox [12].
Moreover, the pseudoscalar interactions are analysed in the context of the (1 + 1)-dimensional
Dirac equation with non-Hermitian interactions but real energies. It is shown that the relevant
hidden symmetry of the Dirac equation with such an interaction is pseudo-supersymmetry [13].

Recently, we have proposed a straightforward method for solving the problem of a Dirac
particle subjected to a pseudoscalar potential in (1+1) dimension by the use of supersymmetric
path integrals [14]. This method proved most fruitful in finding analytical and exact expressions
of the wavefunctions and the energy spectrum of the fermion.

In the present paper, which can be regarded as an extension of the previous one [14], we
suggest performing a path integration for the Dirac equation with pseudoscalar potential in
the more realistic (3 + 1)-dimensional world. In the first stage, we generalize the path integral
formulation given in the previous work following the global projection. Next, we consider
the plane wave case where the pseudoscalar potential is an arbitrary function of the variable
(k · x). In the second stage, we show, after integrating over odd trajectories, that the relative
Green’s function can be expressed only through bosonic path integrals. Then by incorporating
an identity, the (3 + 1)-dimensional problem will be reduced to a (1 + 1)-dimensional problem.
For the case of k2 �= 0, the calculation will be reduced to the propagator of a Schrödinger
particle in an effective supersymmetric potential. For the case of k2 = 0, we show that
the integration over bosonic trajectories is straightforward. Then we can easily extract the
wavefunctions.

2. The general method

As is shown in [14], for the case of the pseudoscalar interaction, it is difficult to build a local
path integral representation using bosonic proper time (Schwinger parameter) and fermionic
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one (Grassmannian variable). So, we construct a global representation starting from the causal
Green’s function Sc(xb, xa) solution of the equation

[γ µPµ − γ 5Vp(x) − m]Sc(xb, xa) = −δ4(xb − xa). (4)

It is known that Sc(xb, xa) can be presented as a matrix element of an operator S
c

Sc
ij (xb, xa) = 〈

xb

∣∣Sc
ij

∣∣xa

〉
, (5)

with

[(γ µ)ijPµ − (γ 5)ijVp(x) − mδij ]Sc
jk = −δik. (6)

Here, the spinor indices i, j and k (with a sum over j ) are written explicitly for clarity and
will be omitted hereafter.

The operator S
c can be presented as follows:

S
c = −1

K−
= −K+

1

K−K+
(7)

where the operators K− and K+ are given by

K± = [γ µPµ − γ 5Vp(x) ± m]. (8)

Note that this procedure is used in [6] to derive path integral representations for the propagator
systematically without the usual five-dimensional extension (i.e. without γ 5) and it is also
employed in [7] in the case of odd dimensions where there is no γ 5 matrix. However, in the
present case, although γ 5 exists, we must use this procedure to obtain a Bose-type operator
that has a quadratic form with respect to γ -matrices.

Taking into account that [γ m, γ n]+ = ηmn, with m, n = 0, 3, 5 and ηmn = diag(1, −1, −1,
−1, −1), the product K−K+ can be rearranged as follows:

K−K+ = P 2 − m2 − V 2
p (x) + i 1

2Fmnγ
mγ n, (9)

where the antisymmetric tensor Fmn, that has to be understood as a matrix with lines marked
by the first contravariant indices and with columns marked by the second covariant indices, is
given by

F5µ = −Fµ5 = ∂

∂xµ
Vp(x),

Fµν = 0.

(10)

Now, in order to construct a global representation we use the relation
∫

dx|x〉〈x| = 1. We get

Sc(xb, xa) =
[

iγ µ ∂

∂x
µ

b

− γ 5Vp(xb) + m

]
Gc(xb, xa), (11)

where the Green’s function Gc(xb, xa), that we suggest to calculate via path integration, has
the following proper time representation:

Gc(xb, xa) = i
∫

dλ〈xb| exp(−iH(λ))|xa〉, (12)

with

H(λ) = λ

(
−P 2 + m2 + V 2

p (x) − i

2
Fmnγ

mγ n

)
. (13)

The operator [iγ µ∂µ − γ 5Vp(x) + m] will eliminate the superfluous states caused by the
product K−K+ in (7).

To present Gc(xb, xa) by means of path integrals we write, to begin with, exp(−iH(λ)) =
[exp(−iH(λ)ε)]N , with ε = 1/N , and we insert (N − 1) identities

∫
dx|x〉〈x| = 1 between
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all the operators exp(−iεH(λ)). Next, we introduce N integrations
∫

dλkδ(λk − λk−1) = 1.
We obtain

Gc = i lim
N→∞
ε→0

∫
dλ0

∫
dx1 dx2 · · · dxN−1

∫
dλ1 dλ2 · · · dλN

×
N∏

k=1

〈xk| exp(−iεH(λk))|xk−1〉δ(λk − λk−1). (14)

Now, we must express the matrix elements 〈xk| exp(−iεH(λk))|xk−1〉 through path integral.
As ε is small, we can write

〈xk| exp(−iεH(λk))|xk−1〉 ≈ 〈xk|1 − iεH(λk)|xk−1〉. (15)

Then, we insert into (15) the integral identity
∫

dpk|pk〉〈pk| = 1. By taking into account that
H(λ) has no product of the operators X,P and by using the relation

〈xk | pk′ 〉 = 1

(2π)2
eipk′ xk , (16)

the matrix element (15) can be expressed in the middle point x̃k = (xk + xk−1)/2

〈xk| exp(−iεH(λk))|xk−1〉 =
∫

dpk

(2π)2
exp

{
i

[
pk

xk − xk−1

ε
− H(λk, x̃k, pk)

]
ε

}
. (17)

Since the multipliers in (14) are noncommutative due to the γ -matrices structure, we attribute
formally the index k, to γ -matrices, and we introduce the T-product which acts on γ -matrices.
Then, using the integral representation for the δ-functions

δ(λk − λk−1) = i

2π

∫
eiπk(λk−λk−1) dπk, (18)

it becomes possible to gather all the multipliers, entering in (14), in one exponent. The Green’s
function Gc will be then expressed as follows:

Gc = T

∫ ∞

0
dλ0

∫
Dx

∫
Dp

∫
Dλ

∫
Dπ

× exp

{
i
∫ 1

0
dτ

[
λ

(
p2 − m2 − V 2

p (x)
)

+ p · ẋ + πλ̇ + λ
i

2
Fmnγ

mγ n

]}
. (19)

In order to insert the γ -matrices by means of path integrals we introduce odd sources ρµ. We
obtain

Gc = T

∫ ∞

0
dλ0

∫
Dx

∫
Dp

∫
Dλ

∫
Dπ

× exp

{
i
∫ 1

0
dτ

[
λ

(
p2 − m2 − V 2

p (x)
)

+ p · ẋ + πλ̇

+ λ
i

2
Fmn

δ

δρm

δ

δρn

]}
T exp

∫ 1

0
ρ(τ)γ dτ

∣∣∣∣
ρ=0

. (20)

Next, we present the quantity T exp
∫ 1

0 ρ(τ)γ dτ via a path integral over Grassmannian
trajectories [5, 6]

T exp
∫ 1

0
ρ(τ)γ dτ = exp

(
iγ n ∂l

∂θn

) ∫
ψ(0)+ψ(1)=θ

Dψ

× exp

{∫ 1

0
dτ [ψnψ̇

n − 2iρnψ
n] + ψn(1)ψn(0)

}
, (21)
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where the measure Dψ is given by

Dψ = Dψ

[∫
ψ(0)+ψ(1)=0

Dψ exp

{∫ 1

0
ψnψ̇

n dτ

}]−1

(22)

and θn and ψn are odd variables, anticommuting with γ -matrices.
Finally, the Green’s function Gc takes the following Hamiltonian path integral

representation:

Gc = exp

(
iγ n ∂l

∂θn

) ∫ ∞

0
dλ0

∫
Dx

∫
Dp

∫
ψ(0)+ψ(1)=θ

Dψ

∫
Dλ

∫
Dπ exp

{
i
∫ 1

0
dτ

[
λ

(
p2 − m2 − V 2

p (x) + 2iFmnψ
mψn

)
− iψnψ̇

n + p · ẋ + πλ̇
]

+ ψn(1)ψn(0)

}∣∣∣∣
θ=0

. (23)

We note that integrating over momenta and separating the gauge-fixing term πλ̇ and the
boundary term ψn(1)ψn(0) we obtain the super-gauge invariant action

A =
∫ 1

0

[
− ẋ2

4λ
− λV 2

p (x) − iψnψ̇
n + 2iλFmnψ

mψn

]
dτ, (24)

which resembles the Berezin–Marinov action [15–18]. From this action we can easily deduce
the Lagrangian classical equations of motion

ẍµ

2λ
− 2λVp(x)

∂

∂xµ
Vp(x) + 2λi

(
∂

∂xµ
Fmn

)
ψmψn = 0, (25)

−2iψ̇m + 4iλFmnψ
n = 0. (26)

Having shown how to formulate the problem of Dirac particle interacting with a pseudoscalar
potential in the framework of Feynman–Beresin path integral, let us examine our method by
elaborating an explicit example.

3. Application

In order to examine this method let us choose the pseudoscalar plane wave potential that is
given by

Vp(x) = gf (k · x), (27)

where f (φ) is an arbitrary function of the variable φ = k · x and kµ is the propagation vector.
In this case, the antisymmetric tensor Fmn will be

Fmn = gf ′(k · x)fnm, (28)

with

f5µ = −fµ5 = kµ, fµν = 0. (29)

To begin, let us fix in equation (23) the gauge over the proper time λ by performing the
functional integral over π and λ. The Green’s function will take the following form:

Gc = exp

(
iγ n ∂l

∂θn

) ∫ ∞

0
dλ

∫
Dx

∫
Dp

∫
ψ(0)+ψ(1)=θ

Dψ

× exp

{
i
∫ 1

0
dτ

[
λ

(
p2 − m2 − V 2

p (x)
)

+ p · ẋ
]}

I(x, λ, θ)

∣∣∣∣
θ=0

, (30)
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where the factor I(x, λ, θ) is given by

I(x, λ, θ) =
∫

ψ(0)+ψ(1)=θ

Dψ exp

{∫ 1

0
dτ [ψnψ̇

n − 2λFmnψ
mψn] + ψn(1)ψn(0)

}
. (31)

Let us now integrate over Grassmannian variables, to express Gc only through bosonic path
integrals. Since the integration variables ψ obey the boundary condition ψ(0) + ψ(1) = θ , it
is suitable, in order to calculate I(x, λ, θ), to change ψ by ξ , where

ψ = 1

2
ξ +

θ

2
. (32)

The new variables ξ obey the following boundary condition:

ξ(0) + ξ(1) = 0. (33)

Then, in order to obtain a more familiar form with respect to ξ variables, we change the proper
time from τ to σ , where

dσ = f ′(k · x) dτ. (34)

The factor I(x, λ, θ) will be given through the Grassmann Gaussian integral

I(x, λ, θ) = exp
(
−g

2
λ̃fnmθnθm

) ∫
Dξ

× exp

{∫ 1

0

[
1

4
ξnξ̇

n − 1

2
gλ̃fnmξnξm − gλ̃fnmθnξm

]
dσ

}∣∣∣∣
θ=0

, (35)

where

λ̃ = λ

∫ 1

0
f ′(k · x) dτ. (36)

Since fnm is constant, the problem is reduced to the constant electromagnetic field with the
five-dimensional extension.

I(x, λ, θ) can then be evaluated to be

I(x, λ, θ) = det
1
2

[
M(g)

M(g = 0)

]
exp

(
−g

2
λ̃fnmθnθm

)

× exp

{∫ 1

0
[J m(σ ′)(M−1)mnJ n(σ )] dσ ′ dσ

}
, (37)

where the matrix M and the current J are given by

Mmn(g) = ηmnδ
′(σ − σ ′) − 2gfmnδ(σ − σ ′), (38)

and

Jn = gλ̃fnmθm. (39)

The determinant in (37) can be written as

det

[
M(g)

M(0)

]
= exp{Tr[log M(g) − log M(0)]}

= exp

{
−Tr

∫ g

0
dg′

∫
dσ

∫
dσ ′R(g′; σ, σ ′)f

}
, (40)

where the tensor Rmn(g; σ, σ ′) is a solution of the equation (see [19])

d

dσ
Rmn(g; σ, σ ′) − gfm

lRln(g; σ, σ ′) = ηmnδ(σ − σ ′), (41)
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with the boundary conditions

Rmn(g; 1, σ ) = −Rmn(g; 0, σ ), ∀σ ∈ [0, 1]. (42)

Writing R in its explicit form

R = (
1
2ηε(σ − σ ′) − 1

2 tanh(gλ̃f)
)

exp[gλ̃f(σ − σ ′)], (43)

and using the property

exp[Tr(ln A)] = det(A), (44)

we obtain

det

[
M(g)

M(0)

]
= det(cosh gλ̃f). (45)

(Note that ε(σ − σ ′) is the sign of (σ − σ ′).)
Then, the factor I(x, λ, θ) will be rearranged as follows:

I(x, λ, θ) = det
1
2 (cosh gλ̃f)(1 − Bnmθnθm), (46)

where the tensor Bnm that has to be understood as a matrix is given by

B = 1
2 tanh(gλ̃f). (47)

At this level we distinguish the following two different cases.

Case 1: k2 �= 0
In this case, being aware of f3 = k2f, we easily obtain

I(x, λ, θ) = cos(g|k|λ̃) +
1

2
sin(g|k|λ̃)

kµ

|k| (θ
µθ5 − θ5θµ). (48)

Then, the spin factor will take the form

exp

(
iγ n ∂l

∂θn

)
I(x, λ, θ)

∣∣∣∣
θ=0

=
∑
s=±1

1

2

(
1 + s

ik̂γ 5

|k|

)
exp

(
iλs|k|

∫ 1

0
V ′

p(k · x) dτ

)
, (49)

where we have used the notation k̂ = k = γ µkµ and |k| =
√

−k2
0 + 
k2 = √−kµkµ.

The Green’s function Gc will be given by

Gc =
∑
s=±1

1

2

(
1 + s

ik̂γ 5

|k|

) ∫ ∞

0
dλ

∫
Dx

∫
Dp exp

{
i
∫ 1

0
dτ

[
λ
(
p2 − m2 − V 2

p (k · x)
)

+ sλ|k|V ′
p(k · x) + p · ẋ]}∣∣∣∣

θ=0

. (50)

In order to continue we benefit from the feature of the plane wave by incorporating the identity
[20] ∫

dφa dφb δ(φa − k · xa)

∫
Dφ Dpφ exp

{
i
∫ 1

0
dτ pφ(φ̇ − kẋ)

}
= 1, (51)

which makes the variable k ·x independent of the quadri-vector of position x. Then, by making
the shift p − pφk → p, it becomes possible to integrate over x and p. The integration over x
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gives δ(ṗ), that means that p is constant. We get

Gc =
∑
s=±1

1

2

(
1 + s

ik̂γ 5

|k|

) ∫
d4p

(2π)4
eip(xb−xa)

×
∫

dφa dφb δ(φa − k · xa)

∫ ∞

0
dλ eiλ(p2−m2)

×
∫

Dφ Dpφ exp

{
i
∫ 1

0
dτ

[
λ
(
k2p2

φ − V 2
p (φ)

)
× λs|k|V ′

p(φ) + pφ(φ̇ + 2λpk)
]}

. (52)

Integrating over pφ , we obtain a simple expression for the Green’s function Gc

Gc =
∑
s=±1

1

2

(
1 + s

ik̂γ 5

|k|

) ∫
d4p

(2π)4
eip(xb−xa)

∫ +∞

0
dλ exp

[
iλ

(
p2 − m2 − (p · k)2

k2

)]

×
∫

dφa dφb δ(φa − k · xa)Ks(φb, φa, λ), (53)

where

Ks(φb, φa, λ) = exp

{
−i

p · k

k2
(φb − φa)

}

×
∫

Dφ exp

{
i
∫ λ

0
dτ

[(
φ̇2

4|k|2 − V 2
p (φ) + s|k|V ′

p(φ)

)]}
. (54)

Thus, the calculation is reduced to the propagator of Schrödinger particle in the effective
supersymmetric potential U(φ) = V 2

p (φ) − s|k|V ′
p(φ). The (3 + 1)-dimensional problem is

reduced simply to a one-dimensional propagator. In other words, the motion of the fermion
in (3 + 1) dimensions is projected along direction of the wave vector.

Also, if we take kµ = (0,−1, 0, 0) we make contact with the one-dimensional problem
studied in the previous work (Vp(x) = Vp(x1)). By performing a simple integration over φa

in (53) followed by integration over p1 and φb one can find

Gc =
∑
s=±1

1

2

(
1 + s

ik̂γ 5

|k|

)
×

∫
dp0

2π

d2p⊥
(2π)2

× exp
(
i
[
p0

(
x0

b − x0
a

) − p⊥(x⊥b − x⊥a)
])

Ps

(
x1

b , x
1
a

)
, (55)

where p⊥ = (p2, p3) ≡ (py, pz), x⊥ = (x2, x3) ≡ (y, z) and the kernel Ps

(
x1

b , x
1
a

)
is the

propagator of a nonrelativistic particle subjected to a supersymmetric potential:

Ps

(
x1

b , x
1
a

) =
∫ +∞

0
dλ exp

[
iλ

(
p2

0 − p2
⊥ − m2

)]
×

∫
Dx1 exp

{
i
∫ 1

0
dτ

[(
(ẋ1)2

4λ
− λV 2

p (x1) + sλV ′
p(x1)

)]}
. (56)
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Case 2: k2 = 0
In this case, we have f3 = 0. So, it is easy to show that

B = 1
2 λ̃f (57)

and

I(x, λ, θ) =
(

1 +
λ̃

2
kµ(θµθ5 − θ5θµ)

)
. (58)

Then, the spin factor will take the form

exp

(
iγ n ∂l

∂θn

)
I(x, λ, θ)

∣∣∣∣
θ=0

= 1 − k̂γ 5λ

∫ 1

0
V ′

p(k · x) dτ (59)

and, consequently, the Greens function Gc can be expressed only through bosonic path integrals

Gc =
∫ ∞

0
dλ

∫
Dp

∫
Dx

[
1 − k̂γ 5λ

∫ 1

0
V ′

p(k · x) dτ

]

× exp

{
i
∫ 1

0
dτ λ

(
p2 − m2 − V 2

p (x)
)

+ pẋ

}
. (60)

As previously by incorporating the identity (51) and by making the shift p − pφk → p, we
get

Gc =
∫

dφa dφb δ (φa − k · xa)

∫ ∞

0
dλ

×
∫

Dφ Dpφ

∫
Dx Dp

(
1 − k̂γ 5λ

∫ 1

0
V ′

p(φ) dτ

)

× exp

{
i
∫ 1

0

[
λ
(
p2 − m2 − V 2

p (φ)
)

+ pφ(φ̇ + 2λpk) + pẋ
]

dτ

}
. (61)

The integration over pφ gives a delta functional δ(φ̇ + 2pk) that is related directly by the
Lagrangian equation of motion projected in the direction of the plane wave. By vanishing the
argument of δ(φ̇ + 2pk), we get

dτ = − dφ

2λpk
. (62)

Integrating now over the plane wave variable φ we obtain the final expression of the Green’s
function Gc

Gc =
∫ ∞

0
dλ

∫
d4p

(2π)4
eip·(xb−xa) eiλ(p2−m2)

×
[

1 +
k̂γ 5

2pk
(Vp(k · xb) − Vp(k · xa))

]
exp

{
i

1

2pk

∫ k·xb

k·xa

V 2
p (φ) dφ

}
. (63)

In order to symmetrize this expression we write(
1 +

k̂γ 5

2pk
(b − a)

)
=

(
1 − k̂γ 5

2pk
a

) (
1 +

k̂γ 5

2pk
b

)
(64)

and we do integration over λ

Gc =
∫

d4p

(2π)4
eip·(xb−xa)

(
1 +

k̂γ 5

2pk
Vp (k · xb)

)

× 1

p2 − m2 + iε
exp

{
i

1

2pk

∫ k·xb

k·xa

V 2
p (φ) dφ

} (
1 − k̂γ 5

2pk
Vp(k · xa)

)
. (65)
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Now, we change p by −p in the last expression of Gc and we incorporate it in equation (11)
to obtain the closed expression of Sc(xb, xa):

Sc(xb, xa) =
∫

d4p

(2π)4
e−ip·(xb−xa)

(
1 +

k̂γ 5

2pk
V (k · xb)

)

× p̂ + m

p2 − m2 + iε
exp

{
−i

1

2pk

∫ k·xb

k·xa

V 2
p (φ) dφ

} (
1 − k̂γ 5

2pk
V (k · xa)

)
. (66)

In order to determine the wavefunctions, let us integrate over the energy p0 and employ the
projectors of the positive and negative energy states [21]:

�+(p) =
∑
±s

u (p, s) ū (p, s) = p̂ + m

2m
, (67)

�−(p) = −
∑
±s

v(p, s)v̄(p, s) = −p̂ + m

2m
. (68)

We then obtain for Sc(xb, xa) the following form:

Sc(xb, xa) = −iθ (tb − ta)

∫
d3p

∑
±s

ψ(+)
s,p (xb)ψ̄

(+)
s,p(xa)

+ iθ (ta − tb)

∫
d3p

∑
±s

ψ(−)
s,p (xb)ψ̄

(−)
s,p (xa), (69)

where

p0 = (
p2 + m2)1/2, (70)

and the wavefunctions are given by

ψ(+)
s,p (x) = 1

(2π)3/2

(
m

p0

)1/2
[

1 +
k̂γ 5

2pk
Vp(x)

]

× u(p, s) × exp

{
−ip · x − i

2pk

∫ k·x

0
V 2

p (φ) dφ

}
, (71)

and

ψ(−)
s,p (x) = 1

(2π)3/2

(
m

p0

)1/2
[

1 − k̂γ 5

2pk
Vp(x)

]

× v (p, s) × exp

{
ip · x − i

2pk

∫ k·x

0
V 2

p (φ) dφ

}
. (72)

Let us note at the end of this work that due to the pseudoscalar interaction that carries γ 5

one cannot derive path integral representation for the corresponding propagator without the
five-dimensional extension. In addition, although some techniques used in this paper with the
five-dimensional extension are the generalization of those used in the usual four-dimensional
case, the obtained results are new.

4. Conclusion

In this paper, we have given a covariant path integral method to analyse the problem of a
Dirac particle subjected to pseudoscalar potential in (3 + 1) dimension. The relative Green’s
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function is presented by means of supersymmetric path integrals in the so-called global
projection, where the internal motion relative to the spin of the fermion is described by odd
Grassmannian variables. As an application, we have considered the case of the plane wave,
where the pseudoscalar potential is an arbitrary function of the variable (kµxµ). Since the
pseudoclassical action has a more familiar form with respect to ψ-variables, we were able to
express the Green’s function only through bosonic path integrals. Then, the (3+1)-dimensional
problem is reduced to (1 + 1)-dimensional one by using the identity (51). For the case of
k2 �= 0, the calculation will be reduced to the propagator of Schrödinger particle in an effective
supersymmetric potential. In this case, we can easily connect to the one-dimensional problem
studied previously. For the case of k2 = 0, we have exactly calculated the relative propagator
and we have found the wavefunctions.

Through the formulation given above and for the explicit example, we conclude, as in the
previous paper, that the supersymmetric path integral is a powerful method to formulate the
relativistic quantum mechanics of a Dirac particle subjected to pseudoscalar potentials.
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